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We study least absolute value (LAV) estimation and inference in the context of simple time
series regression when the disturbances are autocorrelated. Several different estimation
techniques are compared: uncorrected LAV, LAV after a Cochrane-Orcutt (CO)-type
transformation to correct for autocorrelation, LAV after a Prais-Winsten (PW)-type
transformation to correct for autocorrelation, and two pre-test estimators that transform
(by CO and by PW, respectively) when a pre-test suggests that autocorrelation is present.
Monte Carlo simulation methods are used to compare the small-sample performances of
the different estimators. The Prais-Winsten approach to correction for autocorrelation is
preferable to the Cochrane-Orcutt approach, and there appears to be minimal loss
associated with always correcting.

he most commonly-employed approach to estimating the parameters
of regression models is that of ordinary least squares (OLS). The
OLS approach provides estimates that are unbiased and have minimum
variance, as long as the errors are independent and identically distributed
normal random variables. However, when the distribution of the errors is
nonnormal and subject to outlying values, OLS estimators may perform
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quite poorly. In that situation, the use of an estimation technique that is
robust to such violations of the assumptions of OLS is advisable. Least
absolute value (LAV) regression is one of the most commonly-employed
robust regression techniques.

The use of regression models for time series data often involves the
violation of another assumption crucial to the optimality of OLS. With
time series applications, the error terms often are not independent,
displaying a correlation structure through time. This autocorrelation can
arise for many reasons, including the existence of random shocks whose
effects extend for more than one period. For example, a natural disaster,
such as an earthquake or hurricane, can be expected to affect the local
economy (e.g., construction activity) for months or years. On a more
positive note, a corporation hopes that the effect of a large advertising
campaign on its sales is not a single-period phenomenon, but will endure
for some time. In this paper, we investigate the use of LAV estimation
approaches in the presence of the first-order autocorrelation of the
disturbances that is so frequently an issue when dealing with time series
regression.

The problem of first-order autocorrelation has been investigated exten-
sively in the context of OLS (see e.g., Dielman & Pfaffenberger [1989]),
and some work has also been done in the context of least absolute value
(LAV) regression. Weiss (1990) investigated the asymptotic properties of
the LAV estimator when the disturbances are autocorrelated, and suggested
a correction for first-order autocorrelation. Weiss’ method is analogous to
the approach proposed by Cochrane & Orcutt (1949), which is used
frequently in least squares regression. Dielman & Rose (1994a) examined
the performances of several estimators in the regression model with first-
order autocorrelation of the disturbances, including uncorrected OLS and
LAV, and OLS- and LAV-based versions of the Cochrane-Orcutt and
Prais-Winsten (1954) corrections for first-order serial correlation.
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“The use of regression models for time series
data often involves the violation of amother
assumption crucial to the optimality of OLS.
With time series applications, the error terms
often are mnot independent, displaying a
correlation structure through time.”

The results obtained by both Weiss (1990) and Dielman & Rose (1994a,
1994b) suggest that correction for autocorrelation is important for moderate
to large values of the autocorrelation coefficient, whether estimation is by
least squares or least absolute value. For LAV estimation, Dielman & Rose
(1994a) found that the efficiency of the uncorrected estimator is
considerably worse than that of the corrected estimator, particularly as the
severity of the autocorrelation increases. In another study, Dielman & Rose
(1994b) observed that the out-of-sample forecasting performance of the
models suffers when the autocorrelation correction is not employed. As
with many problems of mismatching between the data and the model
assumptions, the problems associated with uncorrected autocorrelation tend
to be magnified when the sample sizes are small. Dielman & Rose (1994a)
found that the inclusion of the first observation in the correction process
is important for LAV estimation, particularly for small-sample situations.
This result has also been observed with least squares-based methods, and
leads to a preference for Prais-Winsten (PW)-type correction over
Cochrane-Orcutt (CO)-type correction.

Previous studies have examined the use of a pre-test procedure when the
estimation is conducted using least squares-based techniques; see, for
example, King & Giles (1984) and Griffiths & Beesley (1984). In this
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research, we extend the literature by considering the use of a pre-test
procedure with LAV regression. Five estimation techniques are compared:
LAV estimation with no correction, LAV estimation with CO-type and
PW-type transformations to correct for autocorrelation, and two pre-test
estimators that transform (by CO in one case and by PW in the other) only
if a pre-test suggests that autocorrelation is present. Monte Carlo simulation
methods are used to compare the small-sample properties of the estimators
and the observed significance levels of the tests.

MODEL, ESTIMATION, AND INFERENCE

Model

We consider a simple regression model of the form

yt='80+ﬁlxt+et (1)
Etzpet—1+nt’

for t=1,2,...,T. In (1), y, and x, are the t" observations on the dependent and
explanatory variables, respectively, and ¢, is a random disturbance for the
t" observation. The m,, are assumed to be independent and identically
distributed, but not necessarily normal. The parameters B, and B, are
unknown and must be estimated. The parameter p is the autocorrelation
coefficient, with |pi<I.

Using matrix notation, the model can be written as
Y=XB+¢, (2)

where
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The LAV criterion selects estimates of B, and B, to minimize the sum
of the absolute residuals. This problem can be stated and solved in a linear
programming context. See Dielman & Pfaffenberger (1982) for a general
survey of LAV regression.

We consider two different two-stage procedures to correct for
autocorrelation in the LAV regression model. These procedures are analo-
gous to the CO and PW procedures commonly employed in least squares
regression, and differ in the treatment of the first observation. Both
procedures transform the data using the autocorrelation coefficient, p. LAV
estimation can then be applied to the transformed data. The PW
transformation matrix is:

1-p2 0
-p 1. . . 00
M, = : ¢ ® omo® § o
L 0 0 =p 1]

Premultiplying the model in (2) by M, yields
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M, Y=M,XG+M, €, (5)

or

Y =X"8+n, (6)

where Y contains the transformed dependent variable values and X" is the
matrix of transformed independent variable values, so

v =10 v, veevs oo Yep¥es )

and

Vi-p2 y1-p* x,
1-p X, ~pX;
¥ = . . (8)

1-p Xp=p Xy

In (6),  is the vector of serially uncorrelated n, errors.

The CO transformation matrix is the (T-1)x1 matrix obtained by
removing the first row of the M, transformation matrix. Note that the use
of the CO transformation means that (T-1) observations, rather than T, are
used in the model estimation. The first observation is omitted, rather than
transformed and included in the estimation. Asymptotically, the loss of this
single observation is relatively inconsequential. However, for small

79



JOURNAL OF BUSINESS AND MANAGEMENT

samples, omitting the first observation has been shown to result in a least
squares estimator inferior to that obtained when the first observation is
retained and transformed; see Dielman & Pfaffenberger (1984), Maeshiro
(1979), and Park & Mitchell (1980). Dielman & Rose (1994a) observed the
same phenomenon in the context of LAV-estimated models.

Operationalization of the model requires that the correlation coefficient,
p, be estimated from sample data. We estimate p by applying LAV
estimation to the following equation:

€ =P8 . BT, (9)

where the &, are the residuals from the LAV fit to the model in (1).

In this paper, we consider the following estimators for the coefficients
B, and B, in (1):

1. LAYV estimation with no correction for autocorrelation: the "LAV"
(never-correct) estimator.

2. LAV estimation after using the CO correction for autocorrelation:
the "CO" (always-correct) estimator.

3. LAV estimation after using the PW correction for autocorrelation:
the "PW" (always-correct) estimator.

4, LAV estimation after using the CO correction if a test for
autocorrelation indicates that correction is required; otherwise LAV
estimation with no correction: the "PRE-CO" (pre-test) estimator.

5. LAV estimation after using the PW correction if a test for

autocorrelation indicates that correction is required; otherwise LAV
estimation with no correction: the "PRE-PW" (pre-test) estimator.
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The test for autocorrelation used in the pre-test estimators is the Durbin-
Watson test applied to the residuals from the LAV fitted model. Weiss
(1990) examined tests for autocorrelation in models estimated using LAV
regression, and found that the Durbin-Watson test applied to the LAV
residuals performed well. The test concludes that correction is necessary
if the test statistic falls below the Durbin-Watson lower bound. Otherwise,
no correction is performed and uncorrected LAV estimation is used.

THE MONTE CARLO DESIGN

The experimental design for the Monte Carlo simulation consists of the
following factors.

Sample size: The sample size is 7=20, chosen to represent a data
history that is short enough so that asymptotic results cannot reasonably be
assumed to be valid. Many applications of practical interest in business and
economics involve samples of approximately this size (e.g., five years of
quarterly data). In addition, previous LAV-related studies (e.g., Dielman
& Pfaffenberger [1990, 1992]) have indicated few differences in model
behavior for 7240, which would imply that asymptotic results may be
applicable above that threshold. These studies also showed that results for
7=20 and T7=30 were similar to each other, while results for 7=14 were
noticeably different. Therefore, the selection of the sample size for this
study is motivated by a desire to investigate small-sample results, while
considering a sufficiently large number of observations to maintain the
viability of the model.

Coefficient values: The parameters B, and B, are both set equal to zero.
This selection causes no loss of generality. Refer to Andrews (1986), who
showed that the choices of the parameter values are irrelevant in Monte
Carlo efficiency comparisons using iterative generalized least squares or
LAYV estimators of the type considered in this study.
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Degree of autocorrelation: p = 0, 0.2, 0.4, 0.6, 0.8, 0.95. We do not
include values for p < 0 in the study, since negative autocorrelation is not
encountered frequently in practical business and economic applications.

Disturbance distributions: Four different distributional forms for the
n, disturbances are considered, to include a variety of outlier-producing
distributions:

1. Normal, with mean 0 and variance 1; i.e., N(0,1).

2. Contaminated normal, where the m, are drawn from a N(0,1)
distribution with probability 0.85 and from a N(0,25) distribution
with probability 0.15.

3. Laplace (double exponential), with mean 0 and variance 2. Uniform
(0,1) random deviates are generated and transformed to Laplace
deviates using the inverse c.d.f. transformation.

4. Cauchy, with median 0 and scale parameter 1.

After generating the n, values, the g, values are created as g, = pg,; + 1,
where g, = 1,/(1-p%), and m, is an initial draw from the disturbance
distribution.

Explanatory variable: The explanatory variables are generated in the
following ways, to enhance the generalizability of the results:

1. Normally distributed: x, = u,, with u, ~ N(0,2).
. Autoregression: x, = Ax,, + u, for A = 0.4, 0.8, with u, ~ N(0,2).
3. Stochastic time trend: x, = M + u, for A = 0.4, 0.8, with », ~
N(0,1).

The patterns in the explanatory variables generated in these ways should
be representative of patterns encountered in practical time series
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applications. Once generated, these values are held fixed throughout the
experiment.

For each factor combination in the experimental design, 5000 Monte
Carlo trials are used, and the resulting parameter estimates are recorded.
All random numbers are generated using IMSL subroutines, and the
explanatory variable values are generated independently of the distur-
bances. The simulation software is written in FORTRAN and run on an
IBM 4341, Model 12.

RESULTS

The performances of various estimators can be compared using a variety
of criteria. In this study, we consider the mean absolute deviations (MAD)
of the slope and the intercept estimates, f, and f3,, for each method,
computed as

5000

E lBi—-Bi|

MBD = .
5000

where B, represents the true value of either B, or B,, as appropriate, and £,
is the estimated value of B,. Note that the MAD value can be viewed as a
measure of an estimator’s efficiency. Since a smaller MAD value is better,
pairs of estimation methods can be compared by considering the ratio of
their MAD values. These ratios are then measures of relative efficiency.
Clearly, if the MAD ratio has a value that is less than 1, the estimation
approach represented in the numerator is preferable to that represented in
the denominator, based on this criterion.
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“Is pre-testing better than always correcting?
The answer is a resounding ’no.””

Various MAD ratios for the 5000 trials have been tabulated for testing
B, and PB,. Figures 1-6 provide graphical displays of some of the most
important results, showing median MAD ratios (across explanatory variable
types) for estimating B, and B, for the values of p and the four different
error distribution types.

As expected, the performances of the PW-type and the CO-type
corrections are quite similar with respect to the estimation of f;, with some
preference for the PW-type approach; these results parallel those observed
by Dielman & Rose (1994a). The comparison between the two approaches
is much more dramatic when estimating f,. The CO-type correction
performs extremely poorly when estimating the intercept term. Therefore,
our analysis of the results focuses more heavily on the PW-type
corrections. Three questions are of primary interest and are addressed
below.

Is pre-testing better than never correcting? This comparison is made
by studying the MAD ratios for LAV:PRE-PW and LAV:PRE-CO. (We
report only PW results; complete results can be obtained from the authors.)
Consider, first, the slope parameter (Figure 1). Not surprisingly, the
preference for the pre-test correction increases with p. For Cauchy-
distributed errors, correction is never worse, and is always preferred when
p=>.2. When the errors follow a Laplace distribution, correction is preferred
when p>.4. For normally-distributed errors, correction is not uniformly
preferred until p>.8, and correction is generally preferred for errors that
follow a contaminated normal distribution. The loss associated with correc-
tion is minimal (e.g., relative efficiency=.96), whereas the loss associated
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with not correcting can be quite large (e.g., relative efficiency=2.65). For
the intercept term (Figure 2), correction is generally preferred for Cauchy,
Laplace, and contaminated normal errors. When the errors are normally-
distributed, the preference is generally for uncorrected LAV estimation.

“The pre-test estimator exhibits its best perfor-
mance when the errors follow a mnormal
distribution.”

Is pre-testing better than always correcting? The answer is a
resounding "no." Given the preference for the PW-type approach to
correction, this comparison is made primarily by considering the MAD
ratio for PRE-PW:PW. For the slope parameter (Figure 3), there is little
loss associated with always correcting, even when p=0. The pre-test
correction performs poorly for Cauchy errors and .2<p<.8. The loss
associated with pre-testing is reduced for p=.95 (the pre-testing results in
correction for virtually all of the 5000 trials). While Laplace-distributed
errors yield a slight preference for pre-testing when p=0, the loss associat-
ed with pre-testing with relatively low autocorrelation far exceeds this
small gain. The pre-test estimator exhibits its best performance when the
errors follow a normal distribution, which is not surprising, since the
Durbin-Watson pre-test is based on an assumption of normality. The pre- -
test approach is preferred for contaminated normal errors only when p=0
and the explanatory variables follow a time trend. The results are fairly
similar for the intercept term (Figure 4). Again, the pre-test correction is
particularly bad for Cauchy-distributed errors and performs best for
normally-distributed errors. For all error distributions, the pre-test approach
is most appropriate when the explanatory variables follow a time trend.
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Figure 1
MAD Ratios For Estimating 6,, LAV:PRE-PW (Ratio greater than
1 implies preference for pre-testing, rather than never correcting)

Ratio
3

2.5

= Cauchy —~ Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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Figure 2

MAD Ratios For Estimating 6,, LAV:PRE-PW (Ratio greater than
1 implies preference for pre-testing, rather than never correcting)

Ratio

— Cauchy =~ Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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Figure 3

MAD Ratios For Estimating 6,, PRE-PW:PW (Ratio greater than 1
implies preference for always correcting, rather than pre-testing)

Ratio

1.75

1.5

— Cauchy —+Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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Figure 4

MAD Ratios For Estimating 6,, PRE-PW:PW (Ratio greater than 1
implies preference for always correcting, rather than pre-testing)

Ratio

1.45

1.2

= Cauchy —+ Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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“There seems to be little loss associated with
adopting the always-correct approach, in terms
of estimation performance.”

When pre-testing, is the PW approach better than the CO
approach? Comparing the MAD ratios for PRE-PW:PRE-CO, the two
approaches seem relatively similar for the slope coefficient (Figure 5), al-
though the results indicate a preference for the PW approach when the
autocorrelation is stronger, and a strong preference for the PW-type
correction when the errors follow a Cauchy distribution. PRE-CO is never
preferred to PRE-PW, except for normally-distributed explanatory variables
and p=.95. However, in estimating the intercept term (Figure 6), PRE-CO
exhibits remarkably poor performance when p>.4. Therefore, the PW
approach is preferred to the CO approach.
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Figure 5

MAD Ratios For Estimating 6,, PRE-PW:PW-CO (Ratio less than 1
implies preference pre-testing using PW, rather than pre-testing
' using CO)

Ratio

— Cauchy ——Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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Figure 6

MAD Ratios For Estimating 6, PRE-PW:PW-CO (Ratio less than 1
implies preference pre-testing using PW, rather than pre-testing
using CO)

Ratio

~— Cauchy —+ Laplace * Normal = CN — Indiff

Medians across explanatory variable types
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“In the context of LAV regression . . . this
study does provide additional evidence that
Prais-Winsten-type correction should be used,
rather than Cochrane-Orcutt-type correction.”

CONCLUSIONS

In comparing the pre-test approach against the strategy of always
correcting for autocorrelation, this study indicates that there seems to be
little loss associated with adopting the always-correct approach, in terms
of estimation performance. Additional research is needed to develop a
more complete understanding of the circumstances under which the use of
a pre-test for serial correlation is useful in the context of LAV regression.
This study does provide additional evidence that Prais-Winsten-type
correction should be used, rather than Cochrane-Orcutt-type correction. The
choice of correction is particularly crucial when inference is made regard-
ing the intercept term, due to the remarkably poor performance of the
Cochrane-Orcutt correction in that context.
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