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Such inputs as seatrities expected retum and variance-covariance matrix in
constructing protfolios are jot^vard looking quantities, which determine ex
ante Efficient Portfolio Frontier. Many hedge funds and separate equity
accounts managers use unique pricing models of their own. They in (um
decide on the value of these inputs, which in the end influences the portfolios
performance. This paper offers pedagogy as to how portfolios can be
customized in varied investment environments and under differing clients'
requirements. It uses some of the most popular interest rate and other
equilibrium asset pricing models.

Today, many customer investment accounts are managed separately on an
individual basis dedicated to the customer's specific need. The securities industry now
derives fee incomes from managing individually lailored portfolios rather tban from
charging irade commissions. Many different forms of hedge funds have also emerged
particularly targeting higb net worth individuals. The industry also introduced what
is known as wrap accounts, which are externally managed investment accounts, and
advice based planning platforms, where customers are directed either to a particular
mutual fund or to a fund of funds called the umbrella fund. Whal is common in these
developments is that investors seem to prefer their own customized portfolios, which
are managed privately, hopefully on an exclusive basis. Several factors may contribute
to this phenomenon.

The firsl and foremost important reason is that any well performing public fund
only draws more buyers and eventually the returns will sutfer in the long run. On the
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contrary, private funds that perform well are not subjected to thai market abuse.
Neither hedge funds nor separate account portfolios are publicly traded.
Therefore.investors find it attractive to have their portfolios customized and managed
by professionals. In their minds, separately managed accounts offer a viable
alternative to the conventional wisdom that investors need to reconfigure their mix
between an index fund and the risk-free asset constantly, as the market condition
changes. And it can be quite expensive. Separately managed accounts or hedge funds
charge fees based only on tbe size of tbe asset, and not on the trading frequency Most
of tbe time tbere are no uncertainties about the account's transaction cost over the
contract's duration. As a matter of fact, fees charged to separate accounts or even to
tbe majority of hedge funds are no higher than ibe management fees embedded in any
publicly traded index fund and the cost of frequently rehalancing the portfolio of an
index fund and the risk-free asset.

Principles involved in managing separate accounts so as to meet the individual's
risk-returti requirement or even to meet tbe "absolute" return objectives by any hedge
fund cannot be different from those followed in forming any optimal portfolios. In
tbis paper some of tbese principles will be reviewed. Consequently, it is not claimed
tbat the technology presented in this paper is new, but a pedagogy of forming various
custom tailored portfolios by putting together some popular models of interest rates
and equilibrium asset prices is offered. A high level discussion on developing a
portfolio management system is also presented.

Why Individually Tailored Portfolios?

Capital market theory in modem finance proposes that investors can reach an
optimal portfolio position based on tbeir risk preference hy mixing the market
portfolio with the risk-free asset. Since no one really knows what the market portfolio
is, people are advised to buy an index fund, wbicb is boped to replicate the market
portfolio. At the same time, some mutual funds may carbon copy the risk retum
profile ol a portfolio with a particular mix between tbe market portfolio and tbe risk-
free asset. This may explain why there is a variety of mutual funds alongside every
index fund. The problem is that one .size may not fit every need. Tbis necessitates the
existence of the separate account and hedge fund businesses. There are other reasons
why individually tailored portfolios make sense to investors besides competitive
advisory fees equivalent to the mutual funds management charges and sales loads.

In chemistr); tbere is only one way to produce water, tbat is, by combining two
atoms of hydrogen and one atom of oxygen. There are only two types of atoms used
and the technolog)-, or the proportion between tbe two atoms, is well known. In
finance, tbere is almost an infinite number of ways in wbicb to achieve an identical
goal. For example, one can achieve an investor's overall risk target with a variety of
securities. They can be categorized as either value or growth stocks or even as
emerging market securities, Wben a portfolio is separately managed privately and if
tbe portfoho performs well, there is little chance that managing tbe portfolio will ever
bave any market impact, which will reduce tbe fund returns. Tbis is the reason why
many hedge funds and separate account managers run portfolios in strict
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confidentiality unlike in tbe case of publicly traded mutual funds.
However, tbere are several important issues that must be addressed in creating and

managing any efficient portfolio. In this paper, some basic results from Modern
Portfolio Tbeory are borrowed to offer several pedagogies to run optimal portfolios.
The paper begins witb the concept of ihe efficient portfolio frontier (EPF), a set of all
possible efficient portfolios, of which we will choose tbe best portfolio for tbe investor.

Constructing Efficient Portfolio Frontier (EPF)

Tbe efficient portfolio is defined as that portfolio which gives the highest expected
return on any given perceived risk. Since, the risk and returns are the ex ante
quantities the EPF thus constructed must be ex ante. Sometimes, people construct ex
post EPF by estimating tbe historical sample mean returns and the sample standard
deviations, which may not repeat in the future.

To establish the mechanics of generating the EPF, start with an n number of
candidate slocks, which may qualify for value, growth, largo or small cap stocks, or
even those that belong to particular sectors. The return on a portfolio r- with a
possible (1 number of stocks is r- = x'r where x and r are the column vector of portfolio
weights, X|'sand individual securities returns, ri's. Note also thatx'l = 1, where 1 is a
(nxl) column vector of l's. The expected retum and the variance of returns on a
portfolio are simply

' n

E[rp]=lx^E[r,]=x'E (Eq. 1)

Matrices E and Q are a (nxl) vector of securities' expected returns and a square
variance-covariance matrix of order n, respectively. ^ l^ ]_^

The EPF is generated normally by maximizing the Sharpe ratio, i.e. 8=—g
with respect to x-s suhject to tbe constraint that x'l = L This is a non-linear
programming problem, and if all x-s must be non-negative, we use solutions

suggested by Kubn, et al (1951). The optimal value of Xj = „' is the solution to

an n number of simultaneous equations E - rj= Qz. Tbe notation z is a (nxl) column
vector of ?j's, where the solution vector z* is z* = Qr^ (E - r̂ ) . The optimal values of
Xj's are then substituted into E\r^ and o^ . which produce one particular point in ihe
EPH By varying different values of xes, a complete locus of EPF is then generated.
Alternatively, one may want to minimize minimizing Op instead of maximizing the function
6. but subject to the constraint that the expected retum on portfolios musi meet certain
minimum retum requirements. Clearly, parameter structures, i.e. E and £2, determine the
shape of the EPF Many analysts may have differing views on these parameters. I
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If portfolio returns follow a particular geometric Brownian motion,
r , = Mnî ' + *̂ m̂ p( VAT where \i-, and o-, are instantaneous annual drift and volatility
terms, and £„, is presumed to be distributed with zero mean and unit variance, then,
ihe forecasting value of portfolios hinges critically upon the value of Up, and Op,, that
is, a vecior of individual securities returns, E, and a variance-covariance matrix, Q.
Bui then, it requires an economic model.

(1) MuUifactor Model
Consider a muUifactor model similar in spirit to the one suggested by Professors

Fama and French (1992; 1993). Suppose that security retums can be explained by
ihree factors such as the market index return, price-to-book value, and firm size. In
order lo estimate the sensitivity of securities returns with respect lo these independent
variables, run a time series regression r = XA + u where r and u are (T x 1) column
vectors of individual securities returns, r,/s and regression errors, û /s at time (,
respectively. X is a matrix of time series regressors. ll may also include, as in BARRA
(DRL: www.harTa.com). variables such as industTy dummies, price-earnings ratio,
price to book, dividend yield, trading activity. 12-month relative strength, logarithm of
market capitalization, earnings variability, EPS growth rate, price to sales, debt to
equity, price volatility, and the like. Typical assumptions ahout the property of the
model are E[U,J=O, E[U^J]=V^, E[I(|,XJ|,]=O, VJ ; = (1,2,3,4| and E[uy^j),,]=O for ; ?* (i.
Note that the variance varies with lime, i.e. non-constant variance. The appropriate
technique to resolve this non-constant variance problem is to use weighted least
squares, a special case of a more general econometric technique known as generalized
least squares.

The model is greatly simplified if Elu,(Ujft]=O, for ( # h. i.e. no autocorrelation.
Existence of a possible heteroscedasticity in the regression error terms means that the
heteroscedasticity being as a special case of the generalized least squares, the error
structure is H[UU']=: V^C, in matrix notation, where

/ l

C =

,T..\

T-1

iT-1

J

Let us assume that the regression thus estimated is f = XA for each stock.
The next step of securities valuation is to run another regression but at this time

cross scctioiially. The regression equation is y = BX + v, assuming thai there are n
numbers of stacks. The vector y = r - r* is the risk premium on individual securities
if ri is the risk-free rate of interest. The remaining matrices are defined as follows:
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The regression coefficients X.'s typically have special meanings in Arbitrage Pricing
Theory, i.e. XQ is the Jensen's alpha equivalent, and all otber X's, the expected risk
premium on portfolios sensitive to each one of the original three factors.

Portfolio returns may drift at the rate of \x^ where Up, = X̂  + \p^ii..\ + ^sflpji./ and
flj,j,_( = x'Bjj.j Vj. The matrix Bj,., is (nxl). The regression error i ' , = y , - /^,, is
assumed to have a zero mean and the volatility equal to Op,. To generate a series of
forecasting values for tip,, it is also necessary to estimate instantaneous volatility o-, of
portfolios retums. Cross sectional regressions can be re|>eated T number of times to
compute standard errors for each individual security.

(2) Capiiai Asset Pricing Model with the Alpha Term
By far the most revealing and yet simple technique is tbe famous Capital Asset

Pricing Model (CAPM). If >'(, = TJ,- rf^ and X^, = r^^,- r̂ ,, consider the following time
series regression model.

y^, = Qi + ^^X,„, + Ui, (Eq. 3)

The symbol r^^ is assumed to be log price relatives for a stock i, i.e
I-N

and sitnilarly, for r̂ ,, as well. Sometimes, when r̂ , Is regressed on r„^^ directly without
subtracting tbe risk-free rate, it is called tbe Single Index Model. If both jy|, and X^,are
random variables assumed to be distributed bivariate normal, Eq. (3) is known as the
hivariate regression, and the constant term â  is the measure of Jensen's excess retum
on securities.

The stock price P, is the last price in real time. Tbe time interval N is commonly
per day, i.e. N = 1, Eq. (3) assumes by convention E[UJ,]=O, E[u^]=vj^and E[ij|fUĵ ]=O
for k 4t,h = U T) and E[EJ,X^^1=0. Again, tbis is tbe regression with non-constant
error variance with respect to time. Consequently, the regression technique is to use
weighted least squares.

Ignoring tbe variance on the risk-free rate of interest Op, for the moment, the
expected retum,, the standard deviation and tbe covariance of securities retums are
then given by

(Eq. 4)



journal of Business and Management - Vol. 12, No. I, 2006

Oy, =: i3i(Pj,o^| (Eq. 6)

N
Since ihe porlfolio return is r_, = V x,r,,, substituiing Eqs. (4), (5) and (6) into Eqs.

i=f

(1) and (2) gives the porlfolio expected return and the standard deviation of returns
as follows;

u + El'/] + E\rj

Using matrix-vector notation, Eqs. (7) and (8) can be rewTitien as:

£ | y l = x'E = x'a+E\rf\

The matrices B and v are given by

/ fi..

B =

Pl2

P22

P,. \

,] (Eq. 7)

(Eq. 9)

(Eq. 10)

(Eq. 11)

V =

0

v;

0

0

0

v^ ...

0

0

0

0 0

(Eq. 12)
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Elements p|̂  in the matrix are given by the cross product of betas, i.e. p,j = Pjp .̂
The optimal portfolio allocation is the solution to the problem that 6 is maximized
with respect to x/s as before subjeci lo x'l = l and Xj z o Vj with no shori sales
assumption. Elton ct al (2003) offer some elementary solutions lo the market
model. Solutions to Zj's and hence, x/s are

. ( = '

"

- C'\ and

(Eq. 13)

The underlying mathematics for EPF has heen illustrated in Eigure 1. By using
CAPM as the basis while allowing for the volatihty of the risk-free rate of interest,
optimal portfolios are found where the straight line through the expecied risk-free rate
of interest becomes tangent with the EPR which we will call the pseudo EPE In
general, the vertical axis would shift lo the right as shown if the risk-free rate of
interest had been volatile. Furthermore, Eq. (7) and hence Eq. (10) would have had
the volatility term for the risk-free rate. Therefore, the pseudo EPE will be shifted to
the left by the amount of ihe volatility of the risk-free rate of interest. In the meantime,
Eq. (7) and therefore, Eq. (9) suggests that the pseudo EPE will move up hy the
expected risk-free rate to generate the true EPE Note that the whole analysis has been

Rgure 1: Delineating Efficient Portfolio Frontier

simplified if o?. = 0.

Expected
Relum

Standard Deviation o
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Method of Parameter Estimation

The characteristics of EPF are contingent upon the variables as shown in Eqs. (9)
and (10). Eqs. (9) and (10) are sensitive to a particular pricing model employed.
Therefore, we estimate ex ante values of E[ryl,£[X^,l and a^ ;̂ and of elements in Aandv.

(1) Return Generating Process for the Expected Risk-Free Rate

As a first step, consider the three-month U.S. Treasury bill yield and compute the mean
and the standard deviarion. There are 21 trading days a month or 252 trading days a year.
Sample sizes would vary as a funciion of tbe fund's investment period. For example, if Lhe
fund's investment period were one year, i.e. 252 trading days, we will use 252 data points.
Of tbem, only 251 returns are "historical." and the latest return observation, or tbe 232"'̂
retum data, is computed in real time. Let us assume, as in Vasicek (1977), tbe risk-free
rate of interest follows a geometric Brownian motion of tbe form:

drj= Mb - r|)dt + Ordz (Eq. 14)

The parameter b is the constant long-term mean retum, X is tbe rate at wbich tbe
current r< reverts to tbe mean and dz is the Brownian motion, i.e. dz = t Vdt.

(2) Computing the Time-Dependent Volatility of the Market Risk Premium

Next, we deal witb annuaUzed daily log price relatives for S&P 500 index, from which
tbe historical annual mean return and tbe standard deviation are also computed. We do
not interpolate returns for weekends and bolidays. Note that the annual mean retum is
tbe daily retum multiplied by 252 days and the annual standard deviation is the daily
volatility times V252. ln order to recognize that volatility varies with time, one may
consider using the exponentially weighted moving average (EWMA) model, wbere the
latest volatility is assigned a greater weight. The general form of EWMA is, for 0 s X s 1.

(Eq.l5)

Witb EWMA, ej.^ over a time period t is often measured by tbe percent cbange in

tbe index itself, i.e. \———]. Tbe symbol i, represents the S&P 500 index at time I.

As an altemative, tbe GARCH (1, 1) model (BoUerslev, 1986; Engle. et al, 1986)
postulates the variance to follow a process,

a^ = bjV + bie^, + b2o;;,+ Ui, = bo+b,ej ,+ b2oj,+ Ui,, where ^bj= 1. Hence,

bj = 1 - b [ - b 2 . If ^3 = 0, bl = 1 -X, andb2 = K then GARACH (1, 1) is equivalent to
FWMA. The symbol V is a long-run average variance rate. Since Elaj'jls bp + bje^^, +
b2p^ ,, the variance forecasts can be computed as E\o^ ,]= V + (b[ + bi){o^ - V),
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where V =
1 - bl -

Similarly, the time-varying covariance between i and j can be

also written either as the exponentially weighted moving average model,

",j..= H M -̂  1̂ - ^Khr ^' GARCH (1, 1). i.e. aj,= ^3+ i-iVj,.^ ^̂ ^U-i-r

(3) Computing the Expected Market Risk Premium

The market risk premium X = r , - r, will be assumed to follow the usual retum
generating process of the form.

The symhol \i^^ is the mean return on the market risk premium.

Evaluating the CAPM through Statistical Regression

Suppose that we estimate the regression Eq. (3) for stock i as y = XA + e, where if
the sample size is T, for each stock i

y =

Yr

X =

1 X2

e =

It is known that ,
A = (X'C"' (Eq. 17)

As for those stocks, which have not been listed for long enough periods, we will
use data only to the extent that retum figures are available. Consequently, each stock
will have as many betas as the total number of investment periods to be considered, as
the size of sample varies with the funds life. Eq. (17) becomes quite simple, if there
is only one independent variable just as in the CAPM regression, i.e.

A Sample Comriance (y^, XJ

Sample Variance (XJ

(5) Estimating the Expected Retum on Individual Securities

In order to calibrate the expected return on individual securities, note that the
security's pricing equation from the regression is E[y^^] =h^+^^E[X^,\. Since
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El_y(,] =E[rj,]-E[rf,l, the expected retum on individual security E[rjJ is given by

Now, we adjust values for betas, assuming that all securities betas tend lo unity. We

follow Blume (1975), where the long run predictive heta, P* = r r r r r r ' "

Consequently, if CAPM holds, the securities pricing equation becomes

iPt (Eq. 18)

Second, we establish some connectivity between the theoretical expected retum as
given in Eq. (18) and the securities mean reium by assuming thai the securities retum
reverts to the mean, i.e.

A _ A

m,,= Etr;,l +>.(r^,-E[rj,]) (Eq. 19)

Now, we still have to define the instanianeous return volatility and we will assume
thai lo he the standard error of the regression, which is v, . See Eq. (5). If the
forecasting error from the regression is c,, = >/, -.Vj,, the variance on ^j , is conveniently

1 ^
measured by v^ = =—^Y^\• ^

• ' ~ ^ = 1

securities retum generating process as

described the method of estimating the

dS,,= (Eq. 20)

Parameter Estimation: An Example

We now show some specific examples in estimating various parameters when
constructing an ex ante EPE We initially consider a randomly chosen 26 stocks in this
example. We also assume the fund's life is one calendar year, or 252 trading days.

Step 1; Take daily log price relatives for the S&P 500 index and annualize them.
Subtract ihe ihree-monih Treasury' bill rales from the annualized S&P index retums to
generate a series X^,. Let us assume that the mean and the standard deviation using
one-year's worth of sample data are given hy:

3-month T-bill yield
Market risk premium

Mean
1.34%

- 5.45%

S.D.
0.02%

26.95%

Step 2: Estimate the expectations coefficient 0 s X, s 1. Simulate Eq. (14), assuming
that on a given day, the actual three-month yield r^was 1.03% with the 1.34% mean
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and 0.02% standard deviation. Using k = 0.10, b = 1.34% and A( = —-— .calibrate the

Monte Carlo trajectory. The result is shown in Table 1, where E[rj\= 1.07%, the last
column.

Table 1: Monte Carlo Trajectory for E|rr,]

(1)

1

2

3

4

5

248

249

250

251

252

(2)

Diti

5/7/2003

6«/2003

6/9/2(X)3

6/10/2003

6/11/2003

5/27/2004

5/28/2004

6/1/2004

6/2/2004

6/3/2004

(3)
RandQm
NumbBTs

-0.3002

2.3757

0-8746

0.0020

0.8030

1-3151

-0.5763

0.4375

0.0062

0.2326

(4)

Growth Rate

-0.0tX)O0I7

0.0000242

0.00OO0Q7

0.0000013

0.0000090

0.0000139

-0.0000043

0.0000055

0.0000013

0.0000035

(5)
Return
Forecasting

0-0103

0.0103

0.0103

0.0103

0.0103

0.0107

0.0107

0.0107

0.0107

0.0107

Remarks: Column for Growth is the implementation for Eq. (14), i.e.

drj = Xib-rj)dt + Oj dz. U has been assumed X = 0.10, b = 1.34% and Al = ~~— .

Forecasted retums at time / are the rale in the preceding period plus the rate given in
column (4).

Step 3: Compute the time dependent volaiilisy on the market index rciuni by using
Eq. (15). The latest volatility is measured by the percent change in the S&P index. If
the annualized percent change in S&P 500 on a particular day is -60.57%, with
>. = 0-!0. ex ante Ox, is [0.90 0.2695^+ 0.10 (-0.6057)^] ^=0.3194.

Slep 4: Conduct a Monte Carlo simulation to generate a series for X^, by using
[Â .j = -0.0545 and Oy, = 0.3194, i.e. Steps 1 and 3. See Table 2. Based on the result
from Monte Carlo simulation trials, we expect the market risk premium will be
14.49% after a period of a year.

Step 5: Compute daily log price relatives Tor each stock. Al! corporate actions, which
may have affected the firm's distribution including, but not necessarily limited to splits,
mergers and acquisitions, spin-offs, equity carve-outs, divestitures and the like except
cash dividends, will have required return adjustments. However, cx-dividend day
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returns will not be adjusted. Run a series of regressions for each stock. The resulting
regression coefficients and standard errors are reported in Table 3. Table 3 also displays
the securities one-year mean return, predictive betas, instantaneous mean retums for all
securities per Eq. (18); and the mean reverting drift retums, i.e. Eq. (19).

Step 6: Calibrate the Monte Carlo trajectories for all securities over a one-year period
forward by using Eq. (20).

Table 2; Monte Carlo Trajectory for

(I)

1

2

3

4

5

247

248

249

250

251

252

(2)

Qate

6/7/2003

6/8/2003

6/9/2003

6/10/2003

6/11/2003

5/26/2004

5/27/2004

5/28/2004

t^l/2004

6/2/2004

(y/V2004

(3)

Random
Numbers

0.6817

0.7718

-0.1674

0.0765

0.7217

0.1367

-2.5412

0.29Q1

•1.1529

-0.3708

0.1646

(4)

Growth
Rate

0.0135

0.0153

•0.0036

0.0013

0.0 H 3

0.0025

-0.0514

0.0058

-0.0234

-0.0077

0.0031

(5)

Cumulative
Rate

1.0135

1.0290

1.0253

1.0267

1.0414

1.2344

1.1710

1.1778

1.1502

l.HH

1.1449

(A)

Market
Risk
Premium
Forecasting
0.0135

0.0290

0.0253

0 0267

0.04H

0.2344

0.1710

0.1778

0.1502

0.H14

0.1449

Remarks: Column (-4) the implementation of Eq. (16), i.e. X,,,, = \i^dt + Oxfixt ̂  •
II has heen assumed ihat \i^^ = -0.0545 and Ox, = 0.3194. Column (5) is given hy a
formula fl (1 + ̂ mt^'- Column (6) is column (5) minus column one (I).
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Table 3: Parameters for Securities Return

(11

1

2

3

4

5

6

T

8

g

10

1 1

12

13

t1

15

16

17

IB

!9

20

21

22

n
24

25

26

(2)

ABC

ACV

BLS

CFC

DELL

EIX

FBF

FON

GAS

GDW

HAS

HMA

If-T

lGT

JCI

KSFL

LSI

MAR

QTRN

ROH

SDS

UCL

VMC

WWY

XLNX

ZION

(3)

BA

0.6143

0.4263

1.1724

O.iJOSh

1-0606

0.9473

1-4209

060«

1,0483

0.7147

0.7079

05923

0,5905

0.eO75

0,8518

0.6202

l.«622

1-0940

0-5753

1.1008

1.3355

0.6943

0.9536

0.4853

1-8596

0.9184

w
u.
0,3f.79

0-1768

0,3880

0.2668

0,2690

0,5034

0.2970

0,6240

0,5730

0.1669

0.2995

0-3297

0 1946

0,2428

0.1913

0,2!57

0.6453

0.2M7

0.38«

0.2165

0.4175

0.2124

0.2366

0.1874

0.527S

0-2179

(5J

Uphi

-0.0777

-0.0135

-0.0021

0.5132

0,21 ifi

-0.11 S3

0-0675

-0-0166

-0.0975

0.19J9

0.2024

-0.1330

-0.0689

0.4408

0.1009

0.0558

-0-3843

0.0799

0.0720

-0,0471

-0,0081

-0.1219

-O,124H

0-0268

0.00H8

0.0406

(6)

Mm

-O.lt 12

-0.0367

-0.1559

0.4638

0.1558

-0.1699

-0.009«

-0.0498

•0.1546

0.1550

0,16J9

-0-1652

-O.IOIO

0.3968

0-0546

0.0220

-0-4B57

0.0203

0.0407

-0,1071

-0.0808

-0-1607

-0-1768

0-0003

-0.0924

-0.0094

(7)
Lna RiBi
Brii

07429

0.6175

1.1149

0.9371

1,0404

0,9649

1.2806

0,7395

1-0322

0.8098

0.8053

0.7282

0-7270

0,8717

0.9012

0.7468

1,5748

1.0627

0-7168

1,0672

1.2237

0.7962

0.9690

0,6569

1-5731

0.9456

m
Mods)
Hurdtt Rite

0.0407

0-O867

0.08O2

0.6597

0.3750

0.0323

0 263«

11.1013

0.0628

0.3220

0.3299

-0-0167

0-0472

0.5778

0.2423

0.1747

-0.1453

0.2446

0.1866

0.U82

0.1799

0.0032

0.0263

0 1327

0.2475

0.1884

(0)
Dritt
Rtturn

0.0255

0.0744

0.0566

0.5401

0.3531

0.0121

0 2365

0.0862

0.0411

0-3053

0.1133

-0.0316

0.0324

0.5597

02235

0.1 594

•0.1794

0.2222

0,1720

0,0957

0 1539

-0.0132

0,0060

0.1194

0.2135

0.1686

(10)

EXP PR

0.0775

-0-1489

-0 0640

0-0817

0.0329

0.0365

0.1139

-0.1924

0.U28

0,0707

0,0794

-0.1283

0.0240

0.0654

0,0409

0.01 15

-0.1041

0.0514

•0.0322

0.0209

0-0359

0.0217

0.0865

0.0621

0.0398

0,0108

Remarks: The standard error of the regression in Column (4) represents a measure of
unsystematic risk. Column (5) is Jensen's excess return. Column (7) is the long-run
beta as compared to the historical beta in Column (3). Column (8) is the equilibrium
expected retum promulgated by the securities pricing model. Column (9) is an
implementation of the mean-reverting drift Eq. (19).

The Solution Technique
Before introducing the solution technique more formally, we now offer some

intuitive economic explanations about what would he hidden behind complicated
mathematical processes. The basic idea has been promulgated in Eq. (13). The idea
is quite simple. Consider Figure 2. First, securities are ranked by their risk premium
to beta in a descending order. This is represented hy a line that declines downward.
Next, a series of scenario portfolios will be formed from the portfolio with one best
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Stock, e.g. WWY in Figure 2, the portfolio of two best stocks, e.g. WWY and HAS, the
portfolio of three best stocks, e.g. WWY, HAS, DELL, and so on until adding another
stock will actually lower the portfolios risk premium to risk ratio. The portfolios curve
will first rise hut will eventually start to fall, as shown. The reason is that when the
portfolio has only a few stocks, it is subject to volatility risk. Consequently, the
portfolios risk premium to risk ratio would be low. As the number of securities to be
included in the portfolio increases, the portfolio's standard deviation will fall, which
raises the risk premium to risk ratio, but only to a certain extent. The portfolios risk
premium to risk ratio will reach a peak eventually before it starts to fall again, as the
majority of stocks to be added to the portfolio will have considerably low expected
returns. As shown, the optimal portfolio includes only seven stocks. The optimal
proportion of stocks in the portfolio is then the proportion that each stock contributes
to the portfolios risk premium to risk ratio. And this is represented by the shaded
rectangles for each stock, assuming that the entire shaded area under the curve that
ranks stocks is 100%.

Rgure 2: Portfolio Optimization

Risk Premium
to RLsk

Ranking Securities by Risk
Premium to Risk

Portfolios RLsk Premium
i» Risk Raila

Securities
WWY H.AS DELL GM ABC BAX AA

The general solution technique is quadratic programming with inequality constraints

5]xi= l;0sci,X2,....X26a:l (Eq. 21)

We will give several more examples here. No matter what we do, however, we will

E[ r J -E l r , |
maximize the objective function given by (}) = —^ — . The final answer depends
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critically on ihe vector of individual securities expectations and variance-covariance
matrices. Table 4 provides such matrices to perform necessary computations hased on
ihe particular numerical examples provided here. See Equations (9) and (10).

The second example is the case in which the proportion of any particular stock
should not exceed any more than, let's say, 10%, while still disallowing short sales.
Constraints can be wriuen as

= 1; 0; x,, Xj,..., X26 s 0.10 (Eq. 22)

The third example is when a person has a stock option and does not wish to sell
his or her current shares nor add any more extra shares. Suppose thai he or she wishes
to maintain a 10% holding in the 5lh stock, DELL. Wilh no short sales assumption,
then, constraints are

2|Xi = 1; X|, X2.--., X26 2 0; Xj =0 .10 CEq- 23)

The last two examples will allow short sales. However, we will add extra
constraints that no shares of any particular stock can he bought or sold at more than
10% of our initial investment. We will use two separate definitions of short sales, one
is conventional, i.e. the fourth example, and the other. Limner's (1965). i.e. the fifth
example. Those two constraints are

J x j = 1; X,, X2,..., X26 a -0 .10; Xj, x,,..., X26 s 0.10 (Eq. 24)

, J|-V(l= l ;x , ,X2, . . . ,X26a-O.10;xi ,X2. . . . ,X26s0.10 (Eq. 25)

Tahle 5 presents soutions for each one of these examples.

ProbabiUty of Reaching the Target Retum and Rebalancing

ll should be noted that the above analysis implies certain probabilities with which
to achieve the specific investment target. The procedure is quite elementary in ihat

(Eq. 26)

To give a numerical example, examine Tahle 4 where the first quadratic
programming solmion re.sutted in the portfolio's expected return of 9.18% and the
return standard deviation of 29.23%. If the target re tum on the account is 12%
consistent with the investor's risk profiles.

0.1200^.0918
0.2923

0.0965]= 0.5384

Consequently, ihe prohahility that the portfolio will achieve at least the 12% re tum
is Pr[rp a 12%]= 1 - 0.5384 = 46.16%, or we are 53.84% certain that the portfolio's
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retum will not exceed 12%. Rebalancing strategies may depend on whether or not lhe
underlying probabilities and bence, tbe ponfolios expected retum and variance change.

System Functionality

Based on the general discussion above, one can visualize the following
functionality in designing a comprebensive portfolio management system.

(1) Manager Input
Fund life - one, two. three, five, 10 or 20 years
Fund s maximum risk in relation to the market
Fund's absolute target return, as is more conventional for hedge funds
Benchmark index - S&rP 500, Wilshire, Russell. Nikkei. FTSE. eic
investment constraints - Stop loss, liquidity, tolerance level for return computation.
upper and lower bounds used for portfolio rebalancing, the maximum amount in
percent that a fund can invest in a particular security, lhe minimum number of shares
that must be held of a particular security in a fund, etc.
Rebalancing strategies - aggressive, benchmark, managed, buy and hold, etc

(2) Model Selection
Managers can use the system provided CAPM solutions or are free to build any pricing
model of their choosing. For example, in Microsoft Excel, up to 20 explanatory
variables can be specified, whether macro or firm specific variables, e.g. foreign
exchange rate, unemployment rale, the general interest rate, inflation rate, economic
growth, etc. for macro variables; and tbe price to book, cash flows, sales growth, ROE,
inventory turnover, leverage, etc. for firm specific and yet variables in commonality.
Explanatory variables can also include technical criteria sucb as Bollinger Band
breakouts, golden cross. RSI. etc.

(3) Stocks under Analysis
These are a group of stocks in the existing portfolio. Eor a new portfolio, determine
investment styles, e.g. momentum, value vs. growth, small vs. large cap, etc. by
defining a group of stocks of interest for up to an x number of stocks.

(4) Manager Specific Outputs
Expected returns and volatility risk on each stock are displayed. Also displayed is
Value at Risk (VaR) as well as Value to Gain (VtG). The results are manager specific
according to the pricing model chosen. Statistics will be provided as lo how significant
the manager's variables are in explaining securities reiums.

(5) Performance Attributes for Existing Porlfoiios
Pasi performance is compared to industr)- performance, just as in BARRA, and all other
variables the manager specified in his or her pricing models.
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(6) Portfolio Optimization Outputs
By invoking the optimization command, each manager will be given the mathematical
result from the portfolio optimization module. Portfolios are optimized to minimize
the risk and to maximize the expected retum. Note that the result varies for different
pricing models chosen.

(7)Performance Monitoring Outputs
Probability to achieve the investment target, various performance measures such as
Sharpe, Treynor and Jensen's, Value at Risk lor portfolios.

Conclusions

The brokerage industry has long been trying to eam fee income while slowly de-
emphasizing its traditional commission driven businesses. It has tried the wrap
account business and mutual fund allocation models to start offering their customers
advisory services. But the industry was not quite able to cross the chasm. With ihe
emergence of the Internet and its wide acceptance as a means of communication,
however, the industry is about to burst into two distinct new lines of somewhat non-
iraditional business. They are ihe online advisory hased planning business and the
separately managed account, all of which largei high nel worth markets. The hard
reality is that, although many are enthralled by the convenience of ihe online advisory
solutions especially in the 401(k) retirement market, the role of financial advisors is
not quite clear. Unless the brokerage industr)' simply licenses the software to end
users with brokerage commissions embedded in ihe license fees, the only viable
altemative is lo pursue the separately managed market. !

For the online ad\isory business, the industry ofTers a variety of fund products. A
single or multiple funds are offered as a part of advisory toois online. Separately
managed accounts are different in that portfolios are particularly custom tailored
according to the client's needs, which underlies the whole premise of the business.
The separately managed account not oniy offers good theories but also makes sound
business sense.

This paper has shown that, in principle, the best asset allocation model should be
based on ex ante and not ex post efficient portfolio frontiers. Specific solutions to the
portfolio selection problem are contingent upon the particular nature of variance-
covariance matrix of securities returns. This results from particular pricing models
used in the model. Desires to discover the sources of "alpha" can be easily
accommodated hy allowing portfolio managers to try out their own "factors" in the
model, ln other words, managers should he allowed to assess their own portfolio
frontiers. That is. make ail portfolios truly unique to all matiagers and to all investors.
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Table 5: Quadratic Programming Solutions under Varying Sifunfions

1

2

3

4

5

6

7

8

9

10

11

12

13

H

15

16

17

18

19

20

21

22

23

24

25

26

ABC

ACV

BLS

CFC

DELL

EIX

FBF

FON

GAS

GDW

HAS

HMA

IFF

IGT

JCI

KSE

LSI

MAR

QTRN

ROH

SDS

UCL

VMC

WWY

XLNX

ZION

Example 1
12.43%

0.00%

0.00%

6.02%

0.00%

0.00%

9.31%

0.00%

8.75%

1 3.68%

14.90%

0.00%

0.00%

0.00%

0.00%

0.00%

0,00%

0.00%

0,00%

0.00%

0.00%

0,00%

11.81%

23.11%

0.00%

0.00%

100.00%

Example 2

iO.00%

0.00%

0.00%

10.00%

0.00%

0.00%

10.00%

0.00%

10.00%

] 0.00%

10.00%

0.00%

0.00%

10.00%

Q.08%

0.00%

0.00%

0.92%

0.00%

0.00%

0.00%

0.00%

10.00%

10.00%

0.00%

0,00%

100,00%

Example 3

12.16%

0.00%

0.00%

5.07%

10.00%

0.00%

11.53%

0,00%

9.63%

8.18%

14.46%

0,00%

0.00%

0.00%

0.00%

0,00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

11.47%

17.51%

0.00%

0.00%

100,00%

Example 4

10.00%

-10.00%

-10.00%

10.00%

10.00%

0.03%

10.00%

-10.00%

10,00%

10.00%

10,00%

-10.00%

10.00%

10.00%

10.00%

10.00%

-10.00%

10.00%

-1.13%

2.f>2%

-1.52%

10.00%

10.00%

10.00%

-10.00%

10.00%

100.00%

Example 5

2,82%

-10,00%

-5.14%

4.83%

-0.94%

O.CM%

5.13%

-3.97%

1.61%

10,00%

4,16%

-10.00%

0.32%

4.28%

L9]%

-2.52%

-2.91%

1,26%

-2-80%

-3,44%

-0.63%

-1.39%

6.56%

8.62%

-0.72%

-4.00%

100.00%

Portfolios
Expected Return
Portfolios
Standard
Deviation
Maximized Sharpe
Ratio

0.0918

0.2923

0.2774

0.0899

0.3038

0.2607

0.0896

0.3053

0.2584

0.1652

0.3025

0.5107

0.0799

0.0697

0.9926
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